I am performing a diff-in-diff analysis using Clarke and Palanir's sdid command.
My question is whether there is a, objective way to choose among available methods ( sdid, did,sc) as I was not able to capture the answer from https://www.damianclarke.net/research/papers/SDID.pdf
Note: In "did" method ATT matches xtdidregress, as expected, rejecting Null Hyphotesis however, in "sdid" method, ATT becomes significant.
thanks
My question is whether there is a, objective way to choose among available methods ( sdid, did,sc) as I was not able to capture the answer from https://www.damianclarke.net/research/papers/SDID.pdf
Note: In "did" method ATT matches xtdidregress, as expected, rejecting Null Hyphotesis however, in "sdid" method, ATT becomes significant.
thanks
Code:
. xtset S T, weekly Panel variable: S (strongly balanced) Time variable: T, 2023w15 to 2023w37 Delta: 1 week . sdid Y S T D,vce(bootstrap) method(sc) Bootstrap replications (50). This may take some time. ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 Synthetic Control ----------------------------------------------------------------------------- Y | ATT Std. Err. t P>|t| [95% Conf. Interval] -------------+--------------------------------------------------------------- D | 44.76957 35.05688 1.28 0.202 -23.94065 113.47979 ----------------------------------------------------------------------------- 95% CIs and p-values are based on Large-Sample approximations.
Code:
. sdid Y S T D,vce(bootstrap) method(sdid) Bootstrap replications (50). This may take some time. ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 Synthetic Difference-in-Differences Estimator ----------------------------------------------------------------------------- Y | ATT Std. Err. t P>|t| [95% Conf. Interval] -------------+--------------------------------------------------------------- D | 54.69791 28.26938 1.93 0.053 -0.70906 110.10488 ----------------------------------------------------------------------------- 95% CIs and p-values are based on Large-Sample approximations. Refer to Arkhangelsky et al., (2020) for theoretical derivations.
Code:
. sdid Y S T D,vce(bootstrap) method(did) Bootstrap replications (50). This may take some time. ----+--- 1 ---+--- 2 ---+--- 3 ---+--- 4 ---+--- 5 .................................................. 50 Difference-in-Differences Estimator ----------------------------------------------------------------------------- Y | ATT Std. Err. t P>|t| [95% Conf. Interval] -------------+--------------------------------------------------------------- D | 30.46574 26.07602 1.17 0.243 -20.64232 81.57380 ----------------------------------------------------------------------------- 95% CIs and p-values are based on Large-Sample approximations. . xtdidregress (Y) (D), group(S) time(T) Treatment and time information Time variable: T Control: D = 0 Treatment: D = 1 ----------------------------------- | Control Treatment -------------+--------------------- Group | S | 90 6 -------------+--------------------- Time | Minimum | 3290 3305 Maximum | 3290 3305 ----------------------------------- Difference-in-differences regression Number of obs = 2,208 Data type: Longitudinal (Std. err. adjusted for 96 clusters in S) ------------------------------------------------------------------------------ | Robust Y | Coefficient std. err. t P>|t| [95% conf. interval] -------------+---------------------------------------------------------------- ATET | D | (1 vs 0) | 30.46574 21.26164 1.43 0.155 -11.74395 72.67543 ------------------------------------------------------------------------------ Note: ATET estimate adjusted for panel effects and time effects.
Comment